AOSC201: Weather and Climate Lab

Week 3: Observations & Simple Forecasts

Section 103/105

Instructor: Agniv Sengupta

Course Info

AOSC201 course webpage:

https://www.aosc.umd.edu/~asengupta/AOSC201/

- ☐ <u>Textbook</u>: *Weather and Climate Laboratory Manual* (1st Edition) by Tim Canty and Travis Sluka.
- Having the textbook is a requirement. This is the last week I'll be providing photocopies of the labs.

You will need a scientific calculator for most of the labs.

Week 3 Lab: Obs. & Simple Forecasts

- □ Lab#4 of Lab Manual (pages 21-24)
- 50 points in total

- Two parts of this lab:
- Observations (Qsn #1-7)
- Persistence Forecasts (Qsn #8-13)
- GROUP Work: Qsn #1-5, INDIVIDUAL Work: Qsn #6-13

What is a sling psychrometer?

Two thermometers: Dry-bulb and Wet-Bulb

When we whirl the psychrometer around, the *wet-bulb thermometer* has water on it that evaporates, *cooling* the bulb. The corresponding reading is the wet bulb temperature.

If the surrounding air is dry, then more of the water evaporates, so the wet-bulb gets decently cooler than the dry-bulb. If the surrounding air is moist, then less water evaporates, so the wet-bulb will be closer in temperature to the dry-bulb.

<u>Relative Humidity</u>: the amount of water vapor present in air expressed as a percentage of the amount needed for saturation at the same temperature.

Question 1 (2 points) Directions:

- Measure the dry bulb and wet bulb temperature.
- PLEASE DO NOT pull the cloth off the psychrometer while measuring.
- Once you have the two temperatures, the sling psychrometer has a reference sheet to determine Relative Humidity (RH) (Refer my website for RH reference table).

Question 1 Directions (...continued):

- How to read the RH conversion chart?
- -- <u>Step 1</u>: Air temp. is the Dry Bulb Temperature. The "depression" of wetbulb is <u>dry bulb minus wet bulb temperature</u>.
- -- <u>Step 2</u>: Now, locate where the <u>depression column intersects</u> with the air temp row, and this is your relative humidity (RH) in percentage.

EXAMPLE: If dry bulb temp. = 75°F and wet bulb temp. = 70°F

Depression = (75 - 70)°F = 5°F, and, RH (from chart) = 78%

Question 2 (2 points) Directions:

- Thermometers will be passed around.
- Give me temperature of air in the classroom in ° Celsius.
- Conversion from °F to °C: T(in °C) = (F-32) * (5/9)

Question 3 (4 points) Directions:

- Determine the *density* of air using the online calculator:
 http://www.denysschen.com/denysschen/catalogue/density.aspx
- Click on "Metric" and enter the values you calculated. We are 22 meters above sea level.
- After you get density (ρ) , use the ideal gas law $(\mathbf{p} = \rho \mathbf{R} \mathbf{T})$ to calculate pressure.

```
where, p = pressure, R_{DRY\,AIR} = 286.9 J/kg/K, and, T = temperature (in Kelvin). 
(<u>Hint</u>: 1 Pascal = 1 J/m<sup>3</sup>, and 1 hectopascal = 100 Pascal)
```

Question 4 (3 points) Directions:

- Observed Pressure will be provided.
- How does the observed pressure compare to your calculated pressure (from Qsn#3)?
- Make an educated guess while answering why there might be differences between the observed and calculated pressures.

Question 5 (6 points) Directions:

- We go outside for this Question and measure and observe different variables using instruments like sling psychrometer, anemometer.
- Fill out the "Campus" measurements in that column (No need to measure air pressure, and fill out wind direction and cloud type for the "campus" column).
- When it comes to cloud cover, just look up in the sky and observe. A very general 1-3 word description is fine (e.g. clear/overcast/scattered clouds, etc. for "cloud cover").
- Then fill out the "College Park Airport" column when we come back inside.
 Use this website: https://w1.weather.gov/data/obhistory/KCGS.html

Question 6 (6 points) Directions:

- Use the <u>first equation</u> (equation a) to calculate the wind chill.
- Temperature you enter for this equation should be the observed temperature in °F for "Campus" (1st column entry from Qsn #5).
- USE a scientific calculator.

Question 7 (4 points) Directions:

- Provide a simple forecast for tomorrow (no point deduction for inaccurate forecast)
- Mention: temperature, wind speed, cloud cover, weather condition etc.

Question 8 (4 points) Directions:

- For Questions 8-10, you will be using data from my website (titled "Persistence Data"). **DO NOT** go to the website listed in the manual.
- For Question 8, look at December 2014 for College Park.

- You must choose <u>two</u> variables Mean Temperature (°F), and Mean Humidity (%), and <u>their respective criteria to be deemed as "similar"</u> to the previous day (within +/-5°F of previous day's temperature, and +/- 15% of previous day's mean humidity).
- BOTH the criteria for the 2 variables have to met <u>simultaneously</u> to be deemed "similar". Thus, record the no. of days when the weather roughly repeated itself.

[12]

Question 9 (4 points) Directions:

- Now look at July 2014 for College Park and repeat the same process as in Qsn #8.
- USE the same set of variables and same threshold criteria as Qsn #8 for deeming a particular day's weather similar to the previous day.

Question 10 (8 points) Directions:

- Now look at December 2014 and July 2014 for Hilo, HI and repeat the same process as in Qsn #8.
- USE the same set of variables and same threshold criteria as Qsn #8 for deeming a particular day's weather similar to the previous day.
- Are persistence forecasts for Hilo, HI more or less accurate than College Park?

Question 11 (3 points) Directions:

Provide an explanation for why the persistence forecasts for Hilo, HI may be more or less accurate than College Park?

Week 3 Lab: Climatological Forecasts

"Weather for a particular day will be the nearly similar to the long term average for that day".

Summary

September 10: Washington, DC

Actual	Historic Avg.	Record	•
75	82	98	
64	65	44	
70	73	-	
Actual	Historic Avg.	Record	•
0.02	0.11	2.79	
5.75	1.11	-	
	75 64 70 Actual 0.02 5.75	75 82 64 65 70 73 Actual Historic Avg. 0.02 0.11	75 82 98 64 65 44 70 73 - Actual Historic Avg. Record 0.02 0.11 2.79 5.75 1.11 -

(Data courtesy: Justin Hicks)

Week 3 Lab: Climatological Forecasts

Question 12 (2 points) Directions:

- You are comparing your answer for Question #5 (College Park airport) to the climatological means for today:
- -- Climatological average high temperature for Feb 22: 48°F
- -- Climatological average precipitation for Feb 22: **0.1 inches**

Week 3 Lab: Simple Forecasts

Question 13 (2 points) Directions:

 Please note for this question, "your forecast" refers to your answer for Question #7 on the previous page of the lab manual.

